№ |
Условие |
Решение
|
Наличие |
03-015 |
Диаметр диска d = 20 см, масса т = 800 г. Определить момент инерции J диска относительно оси, проходящей через середину одного из радиусов перпендикулярно плоскости диска. |
|
картинка |
03-016 |
В однородном диске массой т = 1 кг и радиусом r = 30 см вырезано круглое отверстие диаметром d = 20 см, центр которого находится на расстоянии l = 15 см от оси диска (рис. 3.12). Найти момент инерции J полученного тела относительно оси, проходящей перпендикулярно плоскости диска через его центр. |
|
картинка |
03-017 |
Найти момент инерции J плоской однородной прямоугольной пластины массой т = 800 г относительно оси, совпадающей с одной из ее сторон, если длина а другой стороны равна 40 см. |
|
картинка |
03-018 |
Определить момент инерции J тонкой плоской пластины со сторонами а = 10 см и b = 20 см относительно оси, проходящей через центр масс пластины параллельно большей стороне. Масса пластины равномерно распределена по ее площади с поверхностной плотностью ? = 1,2 кг/м2. |
|
картинка |
03-019 |
Тонкий однородный стержень длиной l = 1 м может свободно вращаться вокруг горизонтальной оси, проходящей через точку О на стержне (рис. 3.13). Стержень отклонили от вертикали на угол а и отпустили. Определить для начального момента времени угловое в и тангенциальное а? ускорения точки В на стержне. Вычисления произвести для следующих случаев |
|
картинка |
03-020 |
Однородный диск радиусом R = 10 см может свободно вращаться вокруг горизонтальной оси, перпендикулярной плоскости диска и проходящей через точку О на нем (рис. 3.14). Диск отклонили на угол а и отпустили. Определить для начального момента времени угловое ? и тангенциальное ат ускорения точки В, находящейся на диске. Вычисления выполнить для следующих случаев: |
|
картинка |
03-021 |
Тонкий однородный стержень длиной l = 50 см и массой m = 400 г вращается с угловым ускорением e = 3 рад/с2 около оси, проходящей перпендикулярно стержню через его середину. Определить вращающий момент М. |
|
картинка |
03-022 |
На горизонтальную ось насажены маховик и легкий шкив радиусом R = 5 см. На шкив намотан шнур, к которому привязан груз массой т = 0,4 кг. Опускаясь равноускоренно, груз прошел путь s = l,8 м за время t = 3 с, Определить момент инерции J маховика. Массу шкива считать пренебрежимо малой. |
|
картинка |
03-023 |
Вал массой m = 100 кг и радиусом R = 5 см вращался с частотой n = 8 с-1. К цилиндрической поверхности вала прижали тормозную колодку с силой F = 40 H, под действием которой вал остановился через t = 10 с. Определить коэффициент трения f. |
|
картинка |
03-024 |
На цилиндр намотана тонкая гибкая нерастяжимая лента, массой которой по сравнению с массой цилиндра можно пренебречь. Свободный конец ленты прикрепили к кронштейну и предоставили цилиндру опускаться под действием силы тяжести. Определить линейное ускорение а оси цилиндра, если цилиндр: 1) сплошной; 2) полый тонкостенный.»« |
|
картинка |
03-025 |
Через блок, имеющий форму диска, перекинут шнур. К концам шнура привязали грузики массой m1 = 100 г и т2 = 110 г. С каким ускорением а будут двигаться грузики, если масса т блока равна 400 г? Трение при вращении блока ничтожно мало. |
|
картинка |
03-026 |
Два тела массами m1 = 0,25 кг и m2 = 0,15 кг связаны тонкой нитью, переброшенной через блок (рис. 3.15). Блок укреплен на краю горизонтального стола, по поверхности которого скользит тело массой m1. С каким ускорением а движутся тела и каковы силы T1 и Т2 натяжения нити по обе стороны от блока? Коэффициент трения f тела о поверхность стола равен 0,2. Масса m блока равна 0,1 кг и ее можно считать равномерно распределенной по ободу. Массой нити и трением в подшипниках оси блока пренебречь. |
|
картинка |
03-027 |
Через неподвижный блок массой т = 0,2 кг перекинут шнур, к концам которого подвесили грузы массами m1 = 0,3 кг и m2 = 0,5 кг. Определить силы натяжения T1 и T2 шнура по обе стороны блока во время движения грузов, если масса блока равномерно распределена по ободу. |
|
картинка |
03-028 |
Шар массой m = 10 кг и радиусом R = 20 см вращается вокруг оси, проходящей через его центр. Уравнение вращения шара имеет вид , где В = 4 рад/с2, С = —1 рад/с3. Найти закон изменения момента сил, действующих на шар. Определить момент сил М в момент времени t = 2 с. |
|
картинка |
03-029 |
Однородный тонкий стержень массой m1 = 0,2 кг и длиной l = 1 м может свободно вращаться вокруг горизонтальной оси z, проходящей через точку О (рис. 3.16). В точку А на стержне попадает пластилиновый шарик, летящий горизонтально (перпендикулярно оси z) со скоростью ? = 10 м/с и прилипает к стержню. Масса т2 шарика равна 10 г. Определить угловую скорость W стержня и линейную скорость и нижнего конца стержня в начальный момент времени. Вычисления выполнить для следующих значений расстояния между то |
|
картинка |
03-030 |
Однородный диск массой т1 = 0,2 кг и радиусом R = 20 см может свободно вращаться вокруг горизонтальной оси z, перпендикулярной плоскости диска и проходящей через точку С (рис. 3.17). В точку, А на образующей диска попадает пластилиновый шарик, летящий горизонтально (перпендикулярно оси z) со скоростью ? = 10 м/с, и прилипает к его поверхности. Масса т2 шарика равна 10 г. Определить угловую скорость W диска и линейную скорость и точки О на диске в начальный момент времени. Вычисления выполнить для с |
|
картинка |
03-031 |
Человек стоит на скамье Жуковского и ловит рукой мяч массой т = 0,4 кг, летящий в горизонтальном направлении со скоростью ? = 20 м/с. Траектория мяча проходит на расстоянии r = 0,8 м от вертикальной оси вращения скамьи. С какой угловой скоростью ? начнет вращаться скамья Жуковского с человеком, поймавшим мяч, если суммарный момент инерции J человека и скамьи равен 6 кг-м2? |
|
картинка |
03-032 |
Маховик, имеющий вид диска радиусом R = 40 см и массой т1 = 48 кг, может вращаться вокруг горизонтальной оси. К его цилиндрической поверхности прикреплен конец нерастяжимой нити, к другому концу которой подвешен груз массой т2 = 0,2 кг (рис. 3.18). Груз был приподнят и затем опущен. Упав свободно с высоты h = 2 м, груз натянул нить и благодаря этому привел маховик во вращение. Какую угловую скорость ? груз сообщил при этом маховику? |
|
картинка |
03-033 |
На краю горизонтальной платформы, имеющей форму диска радиусом R = 2м, стоит человек массой т1 = 80кг. Масса m2 платформы равна 240 кг.Платформа может вращаться вокруг вертикальной оси, проходящей через ее центр. Пренебрегая трением, найти, с какой угловой скоростью ? будет вращаться платформа, если человек будет идти вдоль ее края со скоростью V = 2 м/с относительно платформы. |
|
картинка |
03-034 |
Платформа, имеющая форму диска, может вращаться около вертикальной оси. На краю платформы стоит человек массой т1 = 60 кг. На какой угол ? повернется платформа, если человек пойдет вдоль края платформы и, обойдя его, вернется в исходную точку на платформе? Масса т2 платформы равна 240 кг. Момент инерции J человека рассчитывать как для материальной точки. |
|
картинка |
03-035 |
Платформа в виде диска радиусом R = 1 м вращается по инерции с частотой n1 = 6мин-1. На краю платформы стоит человек, масса т которого равна 80 кг. С какой частотой п будет вращаться платформа, если человек перейдет в ,ее центр? Момент инерции J платформы равен 120 кг?м2. Момент инерции человека рассчитывать как для материальной точки. |
|
картинка |
03-036 |
В центре скамьи Жуковского стоит человек и держит в руках стержень длиной l = 2,4 м и массой т = 8 кг, расположенный вертикально по оси вращения скамейки. Скамья с человеком вращается с частотой n1 = 1 с-1. С какой частотой n2 будет вращаться скамья с человеком, если он повернет стержень в горизонтальное положение? Суммарный момент инерции J человека и скамьи равен 6 кг·м2. |
|
картинка |
03-037 |
Человек стоит на скамье Жуковского и держит в руках стержень, расположенный вертикально вдоль оси вращения скамейки. Стержень служит осью вращения колеса, расположенного на верхнем конце стержня. Скамья неподвижна, колесо вращается с частотой n = 10 с-1. Радиус R колеса равен 20 см, его масса т = 3 кг. Определить частоту вращения п2 скамьи, если человек повернет стержень на угол 180°? Суммарный момент инерции J человека и скамьи равен 6 кг·м2. Массу колеса можно считать равномерно распределенной по |
|
картинка |
03-038 |
Шарик массой т = 100 г, привязанный к концу нити длиной l1 = l м, вращается, опираясь на горизонтальную плоскость, с частотой n1 = 1 с-1. Нить укорачивается и шарик приближается к оси вращения до расстояния l2 = 0,5 м. С какой частотой n2 будет при этом вращаться шарик? Какую работу А совершит внешняя сила, укорачивая нить? Трением шарика о плоскость пренебречь. |
|
картинка |
03-039 |
Маховик вращается по закону, выражаемому уравнением f = A+Bt+Ct^2, где A = 2 рад, B = 32 рад/с, С = —4 рад/с2. Найти среднюю мощность , развиваемую силами, действующими на маховик при его вращении, до остановки, если его момент инерции J = 100 кг·м2. |
|
картинка |
03-040 |
Маховик вращается по закону, выражаемому уравнением f = A+Bt+Ct^2, где А = 2 рад, В = 16 рад/с, С = —2 рад/с2. Момент инерции J маховика равен 50 кг-м2. Найти законы, по которым меняются вращающий момент М и мощность N. Чему равна мощность в момент времени t = 3 с? |
|
картинка |
03-041 |
Якорь мотора вращается с частотой n = 1500 мин-1. Определить вращающий момент М, если мотор развивает мощность N = 500 Вт. |
|
картинка |
03-042 |
Со шкива диаметром d = 0,48 м через ремень передается мощность N = 9 кВт. Шкив вращается с частотой и = 240 мин-1. Сила натяжения T1 ведущей ветви ремня в два раза больше силы натяжения Т2 ведомой ветви. Найти силы натяжения обеих ветвей ремня. |
|
картинка |
03-043 |
Для определения мощности мотора на его шкив диаметром d = 20 см накинули ленту. К одному концу ленты прикреплен динамометр, к другому подвесили груз Р.Найти мощность N мотора, если мотор вращается с частотой n = 24 с-1, масса т груза равна 1 кг и показание динамометра F = 24 Н. |
|
картинка |
03-044 |
Маховик в виде диска массой m = 80 кг и радиусом R = 30 см находится в состоянии покоя. Какую работу A1 нужно совершить, чтобы сообщить маховику частоту n = 10 с-1? Какую работу A2 пришлось бы совершить, если бы при той же массе диск имел меньшую толщину, но вдвое больший радиус? |
|
картинка |