№ |
Условие |
Решение
|
Наличие |
16.52 |
Внутренняя поверхность сферического конденсатора, емкость которого С, эмитирует (испускает) и электронов в секунду. Через время t после начала эмиссии заряд на конденсаторе перестанет возрастать. Найти начальную кинетическую энергию электронов, испускаемых поверхностью |
|
картинка |
16.53 |
Начертить приблизительный вид эквипотенциальных поверхностей и силовых линий поля, возникающего между заряженным металлическим шариком и заземленным металлическим листом |
|
картинка |
16.54 |
Маленький шарик, заряженный до величины q = 1*10^-8 Кл, находится на расстоянии а = 3 см от неограниченной или заземленной плоской металлической поверхности. С какой силой они взаимодействуют |
|
картинка |
16.55 |
На расстоянии r от центра изолированного металлического незаряженного шара находится точечный заряд q. Определить потенциал шара |
|
картинка |
17.01 |
Имеются два металлических заряженных шара. Показать, что после соединения шаров тонкой металлической проволокой плотности зарядов с на шарах будут обратно пропорциональны их радиусам. Расстояние между шарами много больше их радиусов |
|
картинка |
17.02 |
Два шара, один диаметром d1 = 10 см и зарядом q1 = 6*10^-10 Кл, другой — d2 = 30 см и q2 = —2*10^-9 Кл, соединяются длинной тонкой проволокой. Какой заряд переместится по ней |
|
картинка |
17.03 |
Заряженный до потенциала ф = 1000 В шар радиусом R = 20 см соединяется с незаряженным шаром длинным проводником. После этого соединения потенциал шаров оказался ф1 = 300 В. Каков радиус второго шара |
|
картинка |
17.04 |
Маленькие одинаковые капли ртути заряжены одноименно до потенциала ф0 каждая. Определить потенциал большей капли, получающейся от слияния n малых капель |
|
картинка |
17.05 |
К пластинам плоского конденсатора, одна из которых заземлена, приложено напряжение U = 100 В. В воздушный зазор шириной d = 4 см между пластинами вдвигается незаряженная тонкая металлическая пластина на расстоянии l = 3 см от заземленной пластины. Определить потенциал внутренней пластины и напряженность поля по обе стороны от нее. Изменится ли емкость конденсатора |
|
картинка |
17.06 |
В конденсатор, описанный в задаче 17.5, вдвигаются две нейтральные тонкие проводящие пластины, соединенные проводником. Пластины устанавливаются параллельно электродам конденсатора на расстоянии 1 см от каждого из них. Определить потенциалы внутренних пластин и напряженность поля. Изменится ли заряд конденсатора после введения пластин |
|
картинка |
17.07 |
Конденсатор состоит из трех полосок станиоли площадью по S = 6 см2 каждая, разделенных двумя слоями слюды по d = 0,1 мм толщиной. Крайние полоски станиоли соединены между собой. Какова емкость такого конденсатора? Диэлектрическая проницаемость слюды e = 7 |
|
картинка |
17.08 |
Как изменится емкость плоского конденсатора, между его обкладками будет вдвинута: а) пластинка из электрика (е); б) пластинка из проводника ? Толщина каждой пластинки равна половине расстояния между обкладками |
|
картинка |
17.09 |
Даны три конденсатора с емкостями С1 = 1 мкФ, С2 = 2 мкФ и С3 = 3 мкФ, соединенных, как показано на рис. 63, и подключенных к источнику тока с э.д.с. E = 12 В. Определить заряды на каждом из них |
|
картинка |
17.10 |
Три конденсатора с емкостями С1 = 1 мкФ, С2 = 2 мкФ и С3 = 3 мкФ, имеющие максимально допустимые напряжения соответственно U1 = 1000 В, U2 = 200 В U3 = 500 В, соединены в батарею. При каком соединении конденсаторов можно получить наибольшее напряжение? Чему равны напряжение и емкость батареи |
под заказ |
нет |
17.11 |
Два последовательно соединенных конденсатора емкостями С1 = 2 мкФ и С2 = 4 мкФ присоединены к источнику постоянного напряжения U = 120 В. Определить напряжение на каждом конденсаторе |
|
картинка |
17.12 |
Два одинаковых плоских конденсатора соединены параллельно и заряжены до разности потенциалов U = 150 В. Определить разность потенциалов на конденсаторах U1 если после отключения их от источника тока у одного конденсатора уменьшили расстояние между пластинами в два раза |
|
картинка |
17.13 |
Пространство между пластинами плоского конденсатора заполнено двумя слоями диэлектриков: стекла толщиной d1 = 1 см и парафина толщиной d2 = 2 см. Разность потенциалов между обкладками U = 3000 В. Определить напряженность поля Е и падение потенциала в каждом из слоев. Диэлектрическая проницаемость стекла e1 = 7, парафина е2 = 2 |
|
картинка |
17.14 |
Конденсатор, заряженный до напряжения 100 В, соединяется с конденсатором такой же емкости, но заряженным до 200 В: один раз одноименно заряженными обкладками, другой — разноименно заряженными обкладками. Какое напряжение установится между обкладками в обоих случаях |
|
картинка |
17.15 |
Обкладки конденсатора с неизвестной емкостью С1, заряженного до напряжения U1 = 80 В, соединяют с обкладками конденсатора емкостью С2 = 60 мкФ, заряженного до U2 = 16 В. Определить емкость С1, если напряжение на конденсаторах после их соединения U = 20 В, конденсаторы соединяются обкладками, имеющими: а) одноименные заряды; б) разноименные заряды |
|
картинка |
17.16 |
Два одинаковых конденсатора соединены последовательно и подключены к источнику е.д.с. Во сколько раз изменится разность потенциалов на одном из конденсаторов,если другой погрузить в жидкость с диэлектрической проницаемостью e = 2? |
|
картинка |
17.17 |
Плоский воздушный конденсатор заряжен до разности потенциалов U = 60 В и отключен от источника электрического тока. После этого внутрь конденсатора параллельно обкладкам вводится пластинка из диэлектрика с диэлектрической проницаемостью е = 2. Толщина пластинки в два раза меньше величины зазора между обкладками конденсатора. Чему равна разность потенциалов между обкладками конденсатора после введения диэлектрика |
|
картинка |
17.18 |
Два одинаковых плоских воздушных конденсатора соединены последовательно и подключены к источнику э. д. с. Внутрь одного из них вносят диэлектрик с диэлектрической проницаемостью r. Диэлектрик заполняет все пространство между обкладками. Как и во сколько раз изменится напряженность электрического поля в этом конденсаторе |
|
картинка |
17.19 |
Диэлектрик пробивается при напряженности поля Е = 1800 В/мм. Два плоских конденсатора емкостями С1 = 600 см и С2 = 1500 см с изолирующим слоем из этого диэлектрика толщиной d = 2 мм соединены последовательно. При каком наименьшем напряжении будет пробита эта система |
|
картинка |
17.20 |
Конденсатор имеет два диэлектрика с диэлектрическими постоянными e1 и e2 (рис. 64). При каком соотношении между толщинами d1 и d2 слоев диэлектриков падение потенциала в каждом слое диэлектрика окажется равным половине разности потенциалов, приложенной к конденсатору? Найти емкость этого конденсатора, если площадь каждой пластины S |
|
картинка |
17.21 |
Два конденсатора соединены последовательно. Емкости конденсаторов равны С1 и С2. К какому напряжению Uмакс можно подключать эту батарею, если каждый из конденсаторов выдерживает напряжения U1 и U2 соответственно |
|
картинка |
17.22 |
Как изменятся заряд и разность потенциалов обкладок конденсатора С3 (рис. 65) при пробое конденсатора С2? Во сколько раз |
|
картинка |
17.23 |
Определить разность потенциалов А и В в схеме, изображенной на рис. 66 |
|
картинка |
17.24 |
Определить разность потенциалов между точками А и В в схеме, изображенной на рис. 67 |
|
картинка |
17.25 |
Найти емкость системы конденсаторов, включенных между точками А и В, как показано на рис. 68 |
|
картинка |
17.26 |
Плоский конденсатор состоит из двух металлических пластин, пространство между которыми заполнено диэлектриком с диэлектрической постоянной e = 2. Как изменится емкость конденсатора, если его поместить в изолированную металлическую коробку? Просвет между стенками коробки и пластинами вдвое меньше, чем расстояние между пластинами |
под заказ |
нет |