==
решение физики
надпись
физматрешалка

Все авторы/источники->


Страница 336 из 439 Первая<326332333334335336337338339340346439>
К странице  
 
Условие Решение
  Наличие  
69115 Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот воздух
Т1 = 380 К
Р1 = 2,3·105 Па
V1 = 5 л = 5·10–3 м3
a = 3
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.
230 руб
оформление Word
word
69116 Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот воздух
Т1 = 380 К
Р1 = 2,3·105 Па
V1 = 5 л = 6·10–3 м3
a = 3
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.
230 руб
оформление Word
word
69117 Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот гелий
Т1 = 380 К
Р1 = 2,2·105 Па
V1 = 5 л = 6·10–3 м3
a = 3
b = 1,8
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.
230 руб
оформление Word
word
69118 Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот кислород
Т1 = 440 К
Р1 = 1,2·105 Па
V1 = 5 л = 6·10–3 м3
a = 3
b = 1,8
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.
230 руб
оформление Word
word
69119 Маховик, масса которого m = 5 кг, вращается вокруг оси симметрии по закону φ = 8,5·t2 + 8,8 рад. Определите радиус инерции маховика, если его вращение вызвано действием вращающего момента MZ = 190 Н·м. 40 руб
оформление Word
word
69120 ЭДС аккумулятора автомобиля 12 В. При силе тока 3 А его КПД равен 0,8. Определить внутреннее сопротивление аккумулятора. 40 руб
оформление Word
word
69121 Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот кислород
Т1 = 440 К
Р1 = 1,2·105 Па
V1 = 6 л = 6·10–3 м3
a = 3
b = 1,8
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.
230 руб
оформление Word
word
69122 Два одинаковых источника тока соединены в одном случае последовательно, в другом — параллельно и замкнуты на внешнее сопротивление 1 Ом. При каком внутреннем сопротивлении источника сила тока во внешней цепи будет в обоих случаях одинаковой? 40 руб
оформление Word
word
69123 Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — углекислый газ
Т1 = 400 К
Р1 = 1,3·105 Па
V1 = 5 л = 5·10–3 м3
a = 3
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.
230 руб
оформление Word
word
69124 Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — углекислый газ
Т1 = 400 К
Р1 = 1,3·105 Па
V1 = 6 л = 6·10–3 м3
a = 3
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.
230 руб
оформление Word
word
69125 Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот
Т1 = 450 К
Р1 = 1,3·105 Па
V1 = 5 л = 5·10–3 м3
a = 3
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.
230 руб
оформление Word
word
69126 Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот
Т1 = 450 К
Р1 = 1,3·105 Па
V1 = 6 л = 6·10–3 м3
a = 3
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.
230 руб
оформление Word
word
69127 Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот воздух
Т1 = 400 К
Р1 = 1,2·105 Па
V1 = 5 л = 5·10–3 м3
a = 3
b = 1,8
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.
230 руб
оформление Word
word
69128 Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот воздух
Т1 = 400 К
Р1 = 1,2·105 Па
V1 = 6 л = 6·10–3 м3
a = 3
b = 1,8
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.
230 руб
оформление Word
word
69129 Под каким углом к горизонту надо бросить тело со скоростью 20 м/с, чтобы дальность полета была в 4 раза больше наибольшей высоты подъема? Определить уравнение траектории и радиус кривизны в верхней ее точке. 46 руб
оформление Word
word
69130 Материальная точка движется по окружности диаметром 40 м. Зависимость ее координаты от времени движения определяется уравнением S = t3+4t2–3t+8. В какой момент точка изменяет направление движения? Определить пройденный путь, скорость, нормальное, тангенциальное и полное ускорение движущейся точки через 4 с после начала движения. 46 руб
оформление Word
word
69131 Зависимость угла поворота радиуса (r = 2 м) вращающегося колеса от времени задана уравнением φ = 4+5t–t3. Найти угловую скорость и полное ускорение точки, лежащей на ободе колеса, в конце первой секунды вращения. Каковы средние скорость и ускорение за это время? 46 руб
оформление Word
word
69132 Определить работу, которую необходимо затратить, чтобы вывести ракету за пределы поля тяготения Земли, если ракета стартует с космического корабля, движущегося по круговой орбите на уровне 500 км над поверхностью Земли. Масса ракеты 200 кг. 46 руб
оформление Word
word
69133 Маховик, масса которого 6 кг равномерно распределена по ободу радиусом 18 см, вращается на валу с частотой 500 мин–1. Под действием тормозящего момента 10 Н·м маховик останавливается. Найти, через какое время он остановится, какое число оборотов он совершит за это время и какова работа торможения. 46 руб
оформление Word
word
69134 Пружинный маятник, масса которого равна 100 г, колеблется по закону X = 0,05sin(4t–π/3), м. Определить коэффициент упругости пружины и полную энергию маятника. 40 руб
оформление Word
word
69135 По квадратной рамке со стороной 0,2 м течет ток 4 А. Определить напряженность и индукцию магнитного поля в центре рамки. 40 руб
оформление Word
word
69136 Определить индукцию и напряженность магнитного поля в центре проволочной квадратной рамки со стороной 20 см, если по рамке проходит ток силой 4 А. 40 руб
оформление Word
word
69137 Амплитуда гармонического колебания равна 5 см, период – 4 с, начальная фаза π/2. Записать закон колебаний, закон изменения скорости и ускорения. Найти максимальную скорость колеблющейся точки и ее максимальное ускорение. Чему равны кинетическая, потенциальная и полная энергия колеблющейся точки в момент 1 с, если ее масса 10 г? 46 руб
оформление Word
word
69138 На концах тонкого однородного стержня длиной 30 см и массой 400 г закреплены грузы массой 200 и 300 г. Определить момент инерции этого физического маятника и период его собственных колебаний относительно оси, проходящей через середину стержня. 40 руб
оформление Word
word
69139 Маятник состоит из тяжелого шара массой 100 г, подвешенного на нити длиной 50 см. Определить период колебаний маятника и энергию, которой он обладает, если наибольший угол его отклонения от положения равновесия 15°. 40 руб
оформление Word
word
69140 Тонкий однородный стержень длиной 2 м может вращаться вокруг горизонтальной оси, проходящей через конец стержня перпендикулярно ему. Стержень отклонили на 90° от положения равновесия и отпустили. Определить скорость нижнего конца стержня в момент прохождения положения равновесия и период собственных колебаний при малых отклонениях, если масса стержня 2 кг. 40 руб
оформление Word
word
69141 Поперечная волна распространяется вдоль упругого шнура со скоростью 15 м/с. Период колебаний точек шнура равен 1,2 с, максимальное смещение (амплитуда) – 2 см. Определить фазу колебаний и ускорение точки, отстоящей на расстояние 45 м от источника волн, для момента времени 4 с. 40 руб
оформление Word
word
69142 Квадратная рамка со стороной 4 см содержит 100 витков и помещена в однородное магнитное поле напряженностью 100 А/м. Направление поля составляет угол 30° с нормалью к рамке. Какая работа совершается при повороте рамки в положение, когда ее плоскость совпадает с направлением линий индукции поля? 40 руб
оформление Word
word
69143 Материальная точка совершает колебательное движение вдоль оси ОХ по закону X = 8cos(πt+π/2), см. Найти период колебаний и ускорение точки в момент t = T/2, построить график зависимости x(t). 40 руб
оформление Word
word
69144 Материальная точка участвует одновременно в двух колебаниях, происходящих вдоль взаимно перпендикулярных осей, по законам: x = 0,1sin(2t+π); y = 0,2sin(2t+π), где x и y — соответствующие координаты точки; t — время в секундах. Найти уравнение траектории результирующего движения, величину и направление вектора скорости в начальный момент времени. Построить траекторию движения (в масштабе). 40 руб
оформление Word
word
 
Страница 336 из 439 Первая<326332333334335336337338339340346439>
К странице