==
решение физики
надпись
физматрешалка

Все авторы/источники->


Страница 39 из 54 Первая<2935363738394041424354>
К странице  
 
Условие Решение
  Наличие  
73346 Из нормальной генеральной совокупности извлечена выборка объема n и по ней найдены выборочные средняя Хв и исправленная дисперсия S2. Требуется при уровне значимости α = 0,05 проверить нулевую гипотезу:
а) Н0: m = m0, при альтернативной гипотезе Н1: m≠m0, если известно среднее квадратическое отклонение σ;
б) Н0: m = m0, при альтернативной гипотезе Н1: m>m0, если дисперсия неизвестна;
в) Н0: σ2 = σ02, при альтернативной гипотезе Н1: σ2 = σ02.
ХвS2σm0σ02n
0,870,070,80,730,0918
40 руб
оформление Word
word
73347 Из нормальной генеральной совокупности извлечена выборка объема n и по ней найдены выборочные средняя Хв и исправленная дисперсия S2. Требуется при уровне значимости α = 0,05 проверить нулевую гипотезу:
а) Н0: m = m0, при альтернативной гипотезе Н1: m≠m0, если известно среднее квадратическое отклонение σ;
б) Н0: m = m0, при альтернативной гипотезе Н1: m>m0, если дисперсия неизвестна;
в) Н0: σ2 = σ02, при альтернативной гипотезе Н1: σ2 = σ02.
ХвS2σm0σ02n
21,77,72,918,59,322
40 руб
оформление Word
word
73348 Из нормальной генеральной совокупности извлечена выборка объема n и по ней найдены выборочные средняя Хв и исправленная дисперсия S2. Требуется при уровне значимости α = 0,05 проверить нулевую гипотезу:
а) Н0: m = m0, при альтернативной гипотезе Н1: m≠m0, если известно среднее квадратическое отклонение σ;
б) Н0: m = m0, при альтернативной гипотезе Н1: m>m0, если дисперсия неизвестна;
в) Н0: σ2 = σ02, при альтернативной гипотезе Н1: σ2 = σ02.
ХвS2σm0σ02n
6,34,42,85,76,123
40 руб
оформление Word
word
73349 Из нормальной генеральной совокупности извлечена выборка объема n и по ней найдены выборочные средняя Хв и исправленная дисперсия S2. Требуется при уровне значимости α = 0,05 проверить нулевую гипотезу:
а) Н0: m = m0, при альтернативной гипотезе Н1: m≠m0, если известно среднее квадратическое отклонение σ;
б) Н0: m = m0, при альтернативной гипотезе Н1: m>m0, если дисперсия неизвестна;
в) Н0: σ2 = σ02, при альтернативной гипотезе Н1: σ2 = σ02.
ХвS2σm0σ02n
14,74,32,311,55,827
40 руб
оформление Word
word
73350 Из нормальной генеральной совокупности извлечена выборка объема n и по ней найдены выборочные средняя Хв и исправленная дисперсия S2. Требуется при уровне значимости α = 0,05 проверить нулевую гипотезу:
а) Н0: m = m0, при альтернативной гипотезе Н1: m≠m0, если известно среднее квадратическое отклонение σ;
б) Н0: m = m0, при альтернативной гипотезе Н1: m>m0, если дисперсия неизвестна;
в) Н0: σ2 = σ02, при альтернативной гипотезе Н1: σ2 = σ02.
ХвS2σm0σ02n
-3,42,21,7-44,029
40 руб
оформление Word
word
73351 Из нормальной генеральной совокупности извлечена выборка объема n и по ней найдены выборочные средняя Хв и исправленная дисперсия S2. Требуется при уровне значимости α = 0,05 проверить нулевую гипотезу:
а) Н0: m = m0, при альтернативной гипотезе Н1: m≠m0, если известно среднее квадратическое отклонение σ;
б) Н0: m = m0, при альтернативной гипотезе Н1: m>m0, если дисперсия неизвестна;
в) Н0: σ2 = σ02, при альтернативной гипотезе Н1: σ2 = σ02.
ХвS2σm0σ02n
5,82,31,84,24,117
40 руб
оформление Word
word
73352 Из нормальной генеральной совокупности извлечена выборка объема n и по ней найдены выборочные средняя Хв и исправленная дисперсия S2. Требуется при уровне значимости α = 0,05 проверить нулевую гипотезу:
а) Н0: m = m0, при альтернативной гипотезе Н1: m≠m0, если известно среднее квадратическое отклонение σ;
б) Н0: m = m0, при альтернативной гипотезе Н1: m>m0, если дисперсия неизвестна;
в) Н0: σ2 = σ02, при альтернативной гипотезе Н1: σ2 = σ02.
ХвS2σm0σ02n
14,45,72,712,57,530
40 руб
оформление Word
word
73353 Из нормальной генеральной совокупности извлечена выборка объема n и по ней найдены выборочные средняя Хв и исправленная дисперсия S2. Требуется при уровне значимости α = 0,05 проверить нулевую гипотезу:
а) Н0: m = m0, при альтернативной гипотезе Н1: m≠m0, если известно среднее квадратическое отклонение σ;
б) Н0: m = m0, при альтернативной гипотезе Н1: m>m0, если дисперсия неизвестна;
в) Н0: σ2 = σ02, при альтернативной гипотезе Н1: σ2 = σ02.
ХвS2σm0σ02n
2,31,51,61,83,014
40 руб
оформление Word
word
73354 По двум независимым выборкам, объемы которых n1 и n2, извлеченным из нормальных генеральных совокупностей Х и Y, найдены выборочные средние Хв и Yв и исправленные дисперсии Sx2 и Sу2. Требуется при уровне значимости α = 0,01 проверить нулевую гипотезу:
а) Н0: mх = mу, при альтернативной гипотезе Н1: mх≠mу, если известны дисперсии σх и σу генеральных совокупностей;
б) при условии, что σх2 и σу2 неизвестны, вначале проверить гипотезу Н0: σх2 = σу2 и, если она принимается, то затем проверить Н0: mх = mу, при альтернативной гипотезе Н1: mх>mу.
Дано:
а) Н0: mх = mу; Н1: mх≠mу.
Хв = 140; Yв = 130;
D(X) = σx2 = 80; n1 = 40;
D(Y) = σy2 = 100; n2 = 50.
б) Н0: σx2 = σy2; Н1: σx2≠σy2.
Sx2 = 90; Sу2 = 120;
n1 = 7; n2 = 8.
40 руб
оформление Word
word
73355 По двум независимым выборкам, объемы которых n1 и n2, извлеченным из нормальных генеральных совокупностей Х и Y, найдены выборочные средние Хв и Yв и исправленные дисперсии Sx2 и Sу2. Требуется при уровне значимости α = 0,01 проверить нулевую гипотезу:
а) Н0: mх = mу, при альтернативной гипотезе Н1: mх≠mу, если известны дисперсии σх и σу генеральных совокупностей;
б) при условии, что σх2 и σу2 неизвестны, вначале проверить гипотезу Н0: σх2 = σу2 и, если она принимается, то затем проверить Н0: mх = mу, при альтернативной гипотезе Н1: mх>mу.
Дано:
а) Н0: mх = mу; Н1: mх≠mу.
Хв = 130; Yв = 125;
D(X) = σx2 = 60; n1 = 30;
D(Y) = σy2 = 80; n2 = 40.
б) Н0: σx2 = σy2; Н1: σx2≠σy2.
Sx2 = 70; Sу2 = 90;
n1 = 9; n2 = 8.
40 руб
оформление Word
word
73356 По двум независимым выборкам, объемы которых n1 и n2, извлеченным из нормальных генеральных совокупностей Х и Y, найдены выборочные средние Хв и Yв и исправленные дисперсии Sx2 и Sу2. Требуется при уровне значимости α = 0,01 проверить нулевую гипотезу:
а) Н0: mх = mу, при альтернативной гипотезе Н1: mх≠mу, если известны дисперсии σх и σу генеральных совокупностей;
б) при условии, что σх2 и σу2 неизвестны, вначале проверить гипотезу Н0: σх2 = σу2 и, если она принимается, то затем проверить Н0: mх = mу, при альтернативной гипотезе Н1: mх>mу.
Дано:
а) Н0: mх = mу; Н1: mх≠mу.
Хв = 20,1 Yв = 19,8;
D(X) = σx2 = 1,75; n1 = 50;
D(Y) = σy2 = 1,375; n2 = 50.
б) Н0: σx2 = σy2; Н1: σx2≠σy2.
Sx2 = 2,3; Sy2 = 2,8;
n1 = 5; n2 = 6.
40 руб
оформление Word
word
73357 По двум независимым выборкам, объемы которых n1 и n2, извлеченным из нормальных генеральных совокупностей Х и Y, найдены выборочные средние Хв и Yв и исправленные дисперсии Sx2 и Sу2. Требуется при уровне значимости α = 0,01 проверить нулевую гипотезу:
а) Н0: mх = mу, при альтернативной гипотезе Н1: mх≠mу, если известны дисперсии σх и σу генеральных совокупностей;
б) при условии, что σх2 и σу2 неизвестны, вначале проверить гипотезу Н0: σх2 = σу2 и, если она принимается, то затем проверить Н0: mх = mу, при альтернативной гипотезе Н1: mх>mу.
Дано:
а) Н0: mх = mу; Н1: mх≠mу.
Хв = 31,2;Yв = 29,2;
D(X) = σx2 = 1,3; n1 = 45;
D(Y) = σy2 = 1,15; n2 = 55.
б) Н0: σx2 = σy2; Н1: σx2≠σy2.
Sx2 = 0,84; Sу2 = 0,4;
n1 = 11; n2 = 16.
40 руб
оформление Word
word
73358 По двум независимым выборкам, объемы которых n1 и n2, извлеченным из нормальных генеральных совокупностей Х и Y, найдены выборочные средние Хв и Yв и исправленные дисперсии Sx2 и Sу2. Требуется при уровне значимости α = 0,01 проверить нулевую гипотезу:
а) Н0: mх = mу, при альтернативной гипотезе Н1: mх≠mу, если известны дисперсии σх и σу генеральных совокупностей;
б) при условии, что σх2 и σу2 неизвестны, вначале проверить гипотезу Н0: σх2 = σу2 и, если она принимается, то затем проверить Н0: mх = mу, при альтернативной гипотезе Н1: mх>mу.
Дано:
а) Н0: mx = my; Н1: mx≠my.
Xв = 145,3; Yв = 142,3;
D(X) = σx2 = 3,5; n1 = 35;
D(Y) = σy2 = 3,1; n2 = 45.
б) Н0: σx2 = σy2; H1: σx2 ≠ σy2.
Sx2 = 2,7; Sy2 = 3,2;
n1 = 10; n2 = 8.
40 руб
оформление Word
word
73359 По двум независимым выборкам, объемы которых n1 и n2, извлеченным из нормальных генеральных совокупностей Х и Y, найдены выборочные средние Хв и Yв и исправленные дисперсии Sx2 и Sу2. Требуется при уровне значимости α = 0,01 проверить нулевую гипотезу:
а) Н0: mх = mу, при альтернативной гипотезе Н1: mх≠mу, если известны дисперсии σх и σу генеральных совокупностей;
б) при условии, что σх2 и σу2 неизвестны, вначале проверить гипотезу Н0: σх2 = σу2 и, если она принимается, то затем проверить Н0: mх = mу, при альтернативной гипотезе Н1: mх>mу.
Дано:
а) Н0: mx = my; Н1: mx≠my.
Xв = 3,6; Yв = 3,5;
D(X) = σx2 = 0,75; n1 = 60;
D(Y) = σy2 = 0,82; n2 = 50.
б) Н0: σx2 = σy2; H1: σx2 ≠ σy2.
Sx2 = 2,7; Sy2 = 3,2;
n1 = 10; n2 = 12.
40 руб
оформление Word
word
73360 По двум независимым выборкам, объемы которых n1 и n2, извлеченным из нормальных генеральных совокупностей Х и Y, найдены выборочные средние Хв и Yв и исправленные дисперсии Sx2 и Sу2. Требуется при уровне значимости α = 0,01 проверить нулевую гипотезу:
а) Н0: mх = mу, при альтернативной гипотезе Н1: mх≠mу, если известны дисперсии σх и σу генеральных совокупностей;
б) при условии, что σх2 и σу2 неизвестны, вначале проверить гипотезу Н0: σх2 = σу2 и, если она принимается, то затем проверить Н0: mх = mу, при альтернативной гипотезе Н1: mх>mу.
Дано:
а) Н0: mx = my; Н1: mx≠my.
Xв = 12,7; Yв = 12;
D(X) = σx2 = 7,4; n1 = 50;
D(Y) = σy2 = 6,1; n2 = 40.
б) Н0: σx2 = σy2; H1: σx2 ≠ σy2.
Sx2 = 2,7; Sy2 = 3,2;
n1 = 10; n2 = 16.
40 руб
оформление Word
word
73361 По двум независимым выборкам, объемы которых n1 и n2, извлеченным из нормальных генеральных совокупностей Х и Y, найдены выборочные средние Хв и Yв и исправленные дисперсии Sx2 и Sу2. Требуется при уровне значимости α = 0,01 проверить нулевую гипотезу:
а) Н0: mх = mу, при альтернативной гипотезе Н1: mх≠mу, если известны дисперсии σх и σу генеральных совокупностей;
б) при условии, что σх2 и σу2 неизвестны, вначале проверить гипотезу Н0: σх2 = σу2 и, если она принимается, то затем проверить Н0: mх = mу, при альтернативной гипотезе Н1: mх>mу.
Дано:
а) Н0: mx = my; Н1: mx≠my.
Xв = 1275; Yв = 1250;
D(X) = σx2 = 80; n1 = 60;
D(Y) = σy2 = 90; n2 = 50.
б) Н0: σx2 = σy2; H1: σx2 ≠ σy2.
Sx2 = 2,7; Sy2 = 3,2;
n1 = 9; n2 = 7.
40 руб
оформление Word
word
73362 По двум независимым выборкам, объемы которых n1 и n2, извлеченным из нормальных генеральных совокупностей Х и Y, найдены выборочные средние Хв и Yв и исправленные дисперсии Sx2 и Sу2. Требуется при уровне значимости α = 0,01 проверить нулевую гипотезу:
а) Н0: mх = mу, при альтернативной гипотезе Н1: mх≠mу, если известны дисперсии σх и σу генеральных совокупностей;
б) при условии, что σх2 и σу2 неизвестны, вначале проверить гипотезу Н0: σх2 = σу2 и, если она принимается, то затем проверить Н0: mх = mу, при альтернативной гипотезе Н1: mх>mу.
Дано:
а) Н0: mx = my; Н1: mx≠my.
Xв = 14,3; Yв = 12,2;
D(X) = σx2 = 34; n1 = 35;
D(Y) = σy2 = 42; n2 = 45.
б) Н0: σx2 = σy2; H1: σx2 ≠ σy2.
Sx2 = 2,7; Sy2 = 3,2;
n1 = 10; n2 = 10.
40 руб
оформление Word
word
73363 По двум независимым выборкам, объемы которых n1 и n2, извлеченным из нормальных генеральных совокупностей Х и Y, найдены выборочные средние Хв и Yв и исправленные дисперсии Sx2 и Sу2. Требуется при уровне значимости α = 0,01 проверить нулевую гипотезу:
а) Н0: mх = mу, при альтернативной гипотезе Н1: mх≠mу, если известны дисперсии σх и σу генеральных совокупностей;
б) при условии, что σх2 и σу2 неизвестны, вначале проверить гипотезу Н0: σх2 = σу2 и, если она принимается, то затем проверить Н0: mх = mу, при альтернативной гипотезе Н1: mх>mу.
Дано:
а) Н0: mx = my; Н1: mx≠my.
Xв = 150; Yв = 142;
D(X) = σx2 = 34,7; n1 = 50;
D(Y) = σy2 = 28,5; n2 = 50.
б) Н0: σx2 = σy2; H1: σx2 ≠ σy2.
Sx2 = 2,7; Sy2 = 3,2;
n1 = 7; n2 = 9.
40 руб
оформление Word
word
73364 По двум независимым выборкам, объемы которых n1 и n2, извлеченным из нормальных генеральных совокупностей Х и Y, найдены выборочные средние Хв и Yв и исправленные дисперсии Sx2 и Sу2. Требуется при уровне значимости α = 0,01 проверить нулевую гипотезу:
а) Н0: mх = mу, при альтернативной гипотезе Н1: mх≠mу, если известны дисперсии σх и σу генеральных совокупностей;
б) при условии, что σх2 и σу2 неизвестны, вначале проверить гипотезу Н0: σх2 = σу2 и, если она принимается, то затем проверить Н0: mх = mу, при альтернативной гипотезе Н1: mх>mу.
Дано:
а) Н0: mx = my; Н1: mx≠my.
Xв = 3,3; Yв = 2,48;
D(X) = σx2 = 0,72; n1 = 65;
D(Y) = σy2 = 0,87; n2 = 55.
б) Н0: σx2 = σy2; H1: σx2 ≠ σy2.
Sx2 = 2,7; Sy2 = 3,2;
n1 = 5; n2 = 6.
40 руб
оформление Word
word
73365 По двум независимым выборкам, объемы которых n1 и n2, извлеченным из нормальных генеральных совокупностей Х и Y, найдены выборочные средние Хв и Yв и исправленные дисперсии Sx2 и Sу2. Требуется при уровне значимости α = 0,01 проверить нулевую гипотезу:
а) Н0: mх = mу, при альтернативной гипотезе Н1: mх≠mу, если известны дисперсии σх и σу генеральных совокупностей;
б) при условии, что σх2 и σу2 неизвестны, вначале проверить гипотезу Н0: σх2 = σу2 и, если она принимается, то затем проверить Н0: mх = mу, при альтернативной гипотезе Н1: mх>mу.
Дано:
а) Н0: mx = my; Н1: mx≠my.
Xв = -30,5; Yв = -34,2;
D(X) = σx2 = 63,3; n1 = 70;
D(Y) = σy2 = 58,5; n2 = 50.
б) Н0: σx2 = σy2; H1: σx2 ≠ σy2.
Sx2 = 2,7; Sy2 = 3,2;
n1 = 6; n2 = 6.
40 руб
оформление Word
word
73366 По двум независимым выборкам, объемы которых n1 и n2, извлеченным из нормальных генеральных совокупностей Х и Y, найдены выборочные средние Хв и Yв и исправленные дисперсии Sx2 и Sу2. Требуется при уровне значимости α = 0,01 проверить нулевую гипотезу:
а) Н0: mх = mу, при альтернативной гипотезе Н1: mх≠mу, если известны дисперсии σх и σу генеральных совокупностей;
б) при условии, что σх2 и σу2 неизвестны, вначале проверить гипотезу Н0: σх2 = σу2 и, если она принимается, то затем проверить Н0: mх = mу, при альтернативной гипотезе Н1: mх>mу.
Дано:
а) Н0: mx = my; Н1: mx≠my.
Xв = 35,5; Yв = 31,4;
D(X) = σx2 = 37,3; n1 = 50;
D(Y) = σy2 = 42,6; n2 = 35.
б) Н0: σx2 = σy2; H1: σx2 ≠ σy2.
Sx2 = 2,7; Sy2 = 3,2;
n1 = 6; n2 = 6.
40 руб
оформление Word
word
73367 По двум независимым выборкам, объемы которых n1 и n2, извлеченным из нормальных генеральных совокупностей Х и Y, найдены выборочные средние Хв и Yв и исправленные дисперсии Sx2 и Sу2. Требуется при уровне значимости α = 0,01 проверить нулевую гипотезу:
а) Н0: mх = mу, при альтернативной гипотезе Н1: mх≠mу, если известны дисперсии σх и σу генеральных совокупностей;
б) при условии, что σх2 и σу2 неизвестны, вначале проверить гипотезу Н0: σх2 = σу2 и, если она принимается, то затем проверить Н0: mх = mу, при альтернативной гипотезе Н1: mх>mу.
Дано:
а) Н0: mx = my; Н1: mx≠my.
Xв = 68,1; Yв = 67,6;
D(X) = σx2 = 26,6; n1 = 40;
D(Y) = σy2 = 24,3; n2 = 35.
б) Н0: σx2 = σy2; H1: σx2 ≠ σy2.
Sx2 = 2,7; Sy2 = 3,2;
n1 = 7; n2 = 9.
40 руб
оформление Word
word
73368 По двум независимым выборкам, объемы которых n1 и n2, извлеченным из нормальных генеральных совокупностей Х и Y, найдены выборочные средние Хв и Yв и исправленные дисперсии Sx2 и Sу2. Требуется при уровне значимости α = 0,01 проверить нулевую гипотезу:
а) Н0: mх = mу, при альтернативной гипотезе Н1: mх≠mу, если известны дисперсии σх и σу генеральных совокупностей;
б) при условии, что σх2 и σу2 неизвестны, вначале проверить гипотезу Н0: σх2 = σу2 и, если она принимается, то затем проверить Н0: mх = mу, при альтернативной гипотезе Н1: mх>mу.
Дано:
а) Н0: mx = my; Н1: mx≠my.
Xв = 13,8; Yв = 13,32;
D(X) = σx2 = 5,35; n1 = 60;
D(Y) = σy2 = 7,72; n2 = 50.
б) Н0: σx2 = σy2; H1: σx2 ≠ σy2.
Sx2 = 2,7; Sy2 = 3,2;
n1 = 5; n2 = 5.
40 руб
оформление Word
word
73369 По двум независимым выборкам, объемы которых n1 и n2, извлеченным из нормальных генеральных совокупностей Х и Y, найдены выборочные средние Хв и Yв и исправленные дисперсии Sx2 и Sу2. Требуется при уровне значимости α = 0,01 проверить нулевую гипотезу:
а) Н0: mх = mу, при альтернативной гипотезе Н1: mх≠mу, если известны дисперсии σх и σу генеральных совокупностей;
б) при условии, что σх2 и σу2 неизвестны, вначале проверить гипотезу Н0: σх2 = σу2 и, если она принимается, то затем проверить Н0: mх = mу, при альтернативной гипотезе Н1: mх>mу.
Дано:
а) Н0: mx = my; Н1: mx≠my.
Xв = 70,5; Yв = 70,2;
D(X) = σx2 = 0,5; n1 = 80;
D(Y) = σy2 = 1; n2 = 60.
б) Н0: σx2 = σy2; H1: σx2 ≠ σy2.
Sx2 = 2,7; Sy2 = 3,2;
n1 = 4; n2 = 9.
40 руб
оформление Word
word
73370 По двум независимым выборкам, объемы которых n1 и n2, извлеченным из нормальных генеральных совокупностей Х и Y, найдены выборочные средние Хв и Yв и исправленные дисперсии Sx2 и Sу2. Требуется при уровне значимости α = 0,01 проверить нулевую гипотезу:
а) Н0: mх = mу, при альтернативной гипотезе Н1: mх≠mу, если известны дисперсии σх и σу генеральных совокупностей;
б) при условии, что σх2 и σу2 неизвестны, вначале проверить гипотезу Н0: σх2 = σу2 и, если она принимается, то затем проверить Н0: mх = mу, при альтернативной гипотезе Н1: mх>mу.
Дано:
а) Н0: mx = my; Н1: mx≠my.
Xв = 16,1; Yв = 15,3;
D(X) = σx2 = 0,87; n1 = 65;
D(Y) = σy2 = 0,63; n2 = 45.
б) Н0: σx2 = σy2; H1: σx2 ≠ σy2.
Sx2 = 2,7; Sy2 = 3,2;
n1 = 10; n2 = 10.
40 руб
оформление Word
word
73371 По двум независимым выборкам, объемы которых n1 и n2, извлеченным из нормальных генеральных совокупностей Х и Y, найдены выборочные средние Хв и Yв и исправленные дисперсии Sx2 и Sу2. Требуется при уровне значимости α = 0,01 проверить нулевую гипотезу:
а) Н0: mх = mу, при альтернативной гипотезе Н1: mх≠mу, если известны дисперсии σх и σу генеральных совокупностей;
б) при условии, что σх2 и σу2 неизвестны, вначале проверить гипотезу Н0: σх2 = σу2 и, если она принимается, то затем проверить Н0: mх = mу, при альтернативной гипотезе Н1: mх>mу.
Дано:
а) Н0: mx = my; Н1: mx≠my.
Xв = 37,5; Yв = 36,8;
D(X) = σx2 = 0,9; n1 = 50;
D(Y) = σy2 = 1,1; n2 = 60.
б) Н0: σx2 = σy2; H1: σx2 ≠ σy2.
Sx2 = 2,7; Sy2 = 3,2;
n1 = 16; n2 = 25.
40 руб
оформление Word
word
73372 По двум независимым выборкам, объемы которых n1 и n2, извлеченным из нормальных генеральных совокупностей Х и Y, найдены выборочные средние Хв и Yв и исправленные дисперсии Sx2 и Sу2. Требуется при уровне значимости α = 0,01 проверить нулевую гипотезу:
а) Н0: mх = mу, при альтернативной гипотезе Н1: mх≠mу, если известны дисперсии σх и σу генеральных совокупностей;
б) при условии, что σх2 и σу2 неизвестны, вначале проверить гипотезу Н0: σх2 = σу2 и, если она принимается, то затем проверить Н0: mх = mу, при альтернативной гипотезе Н1: mх>mу.
Дано:
а) Н0: mx = my; Н1: mx≠my.
Xв = 0,05; Yв = -0,03;
D(X) = σx2 = 0,32; n1 = 65;
D(Y) = σy2 = 0,38; n2 = 50.
б) Н0: σx2 = σy2; H1: σx2 ≠ σy2.
Sx2 = 2,7; Sy2 = 3,2;
n1 = 11; n2 = 16.
40 руб
оформление Word
word
73373 По двум независимым выборкам, объемы которых n1 и n2, извлеченным из нормальных генеральных совокупностей Х и Y, найдены выборочные средние Хв и Yв и исправленные дисперсии Sx2 и Sу2. Требуется при уровне значимости α = 0,01 проверить нулевую гипотезу:
а) Н0: mх = mу, при альтернативной гипотезе Н1: mх≠mу, если известны дисперсии σх и σу генеральных совокупностей;
б) при условии, что σх2 и σу2 неизвестны, вначале проверить гипотезу Н0: σх2 = σу2 и, если она принимается, то затем проверить Н0: mх = mу, при альтернативной гипотезе Н1: mх>mу.
Дано:
а) Н0: mx = my; Н1: mx≠my.
Xв = 8,5; Yв = 6,2;
D(X) = σx2 = 100; n1 = 50;
D(Y) = σy2 = 74; n2 = 70.
б) Н0: σx2 = σy2; H1: σx2 ≠ σy2.
Sx2 = 2,7; Sy2 = 3,2;
n1 = 31; n2 = 61.
40 руб
оформление Word
word
73374 По двум независимым выборкам, объемы которых n1 и n2, извлеченным из нормальных генеральных совокупностей Х и Y, найдены выборочные средние Хв и Yв и исправленные дисперсии Sx2 и Sу2. Требуется при уровне значимости α = 0,01 проверить нулевую гипотезу:
а) Н0: mх = mу, при альтернативной гипотезе Н1: mх≠mу, если известны дисперсии σх и σу генеральных совокупностей;
б) при условии, что σх2 и σу2 неизвестны, вначале проверить гипотезу Н0: σх2 = σу2 и, если она принимается, то затем проверить Н0: mх = mу, при альтернативной гипотезе Н1: mх>mу.
Дано:
а) Н0: mx = my; Н1: mx≠my.
Xв = 16,2; Yв = 13,9;
D(X) = σx2 = 7,2; n1 = 70;
D(Y) = σy2 = 8,3; n2 = 60.
б) Н0: σx2 = σy2; H1: σx2 ≠ σy2.
Sx2 = 2,7; Sy2 = 3,2;
n1 = 8; n2 = 9.
40 руб
оформление Word
word
73375 По двум независимым выборкам, объемы которых n1 и n2, извлеченным из нормальных генеральных совокупностей Х и Y, найдены выборочные средние Хв и Yв и исправленные дисперсии Sx2 и Sу2. Требуется при уровне значимости α = 0,01 проверить нулевую гипотезу:
а) Н0: mх = mу, при альтернативной гипотезе Н1: mх≠mу, если известны дисперсии σх и σу генеральных совокупностей;
б) при условии, что σх2 и σу2 неизвестны, вначале проверить гипотезу Н0: σх2 = σу2 и, если она принимается, то затем проверить Н0: mх = mу, при альтернативной гипотезе Н1: mх>mу.
Дано:
а) Н0: mx = my; Н1: mx≠my.
Xв = 307,11; Yв = 304,77;
D(X) = σx2 = 1,42; n1 = 60;
D(Y) = σy2 = 1,77; n2 = 80.
б) Н0: σx2 = σy2; H1: σx2 ≠ σy2.
Sx2 = 2,7; Sy2 = 3,2;
n1 = 9; n2 = 13.
40 руб
оформление Word
word
 
Страница 39 из 54 Первая<2935363738394041424354>
К странице