==
решение физики
надпись
физматрешалка

Все авторы/источники->Иродов И.Е.


Перейти к задаче:  
Страница 45 из 71 Первая<354142434445464748495571>
К странице  
 
Условие Решение
  Наличие  
4-146 На рис. показана схема установки для наблюдения дифракции света на ультразвуке. Плоская световая волна длиной L = 0,55 мкм проходит через кювету K с водой, в которой возбуждена стоячая ультразвуковая волна с частотой v = 4,7 МГц. В результате дифракции света на оптически не однородной периодической структуре в фокальной плоскости объектива О с фокусным расстоянием f = 35 см возникает дифракционная картина. Расстояние между соседними максимумами dx = 0,60 мм. Найти скорость распространения ультра под заказ
нет
4-147 Щель ширины b, освещаемая светом с L = 0,60 мкм, находится в фокальной плоскости объектива с фокусным расстоянием f = 1,5 м. За объективом расположен экран с двумя узкими щелями, отстоящими друг от друга на расстояние d = 1,0 мм. Оценить ширину b, при которой будет наблюдаться интерференция от двух щелей. под заказ
нет
4-148 Для измерения методом Майкельсона углового расстояния ф между компонентами двойной звезды перед объективом телескопа поместили диафрагму с двумя узкими параллельными щелями, расстояние d между которыми можно менять. Уменьшая d, обнаружили первое ухудшение видимости дифракционной картины в фокальной плоскости объектива при d = 95 см. Найти ф, считая длину волны света L = 0,55 мкм. под заказ
нет
4-149 Прозрачная дифракционная решетка имеет период d = 1,50 мкм. Найти угловую дисперсию D (в угл. мин/нм), соответствующую максимуму наибольшего порядка спектральной линии с L = 530 нм, если свет падает на решетку: а) нормально; б) под углом ф0 = 45° к нормали. под заказ
нет
4-150 Свет с L = 550 нм падает нормально на дифракционную решетку. Найти ее угловую дисперсию под углом дифракции ф = 60°. под заказ
нет
4-151 Свет с L = 589,0 нм падает нормально на дифракционную решетку с периодом d = 2,5 мкм, содержащую N = 10000 штрихов. Найти угловую ширину фраунгоферова максимума второго порядка (в угл. сек).
предпросмотр решения задачи N 4-151 Иродов И.Е.
картинка
4-152 Показать, что при нормальном падении света на дифракционную решетку максимальная величина ее разрешающей способности не может превышать значения l/L, где l — ширина решетки, L — длина волны света. под заказ
нет
4-153 Показать на примере дифракционной решетки, что разность частот двух максимумов, разрешаемых по критерию Рэлея, равна обратной величине разности времен прохождения самых крайних интерферирующих колебаний, т. е. dv = l/dt. под заказ
нет
4-154 Свет, содержащий две спектральные линии с длинами волн 600,000 и 600,050 нм, падает нормально на дифракционную решетку ширины 10,0 мм. Под некоторым углом дифракции ф эти линии оказались на пределе разрешения (по критерию Рэлея). Найти ф.
предпросмотр решения задачи N 4-154 Иродов И.Е.
картинка
4-155 Свет падает нормально на дифракционную решетку ширины l = 6,5 см, имеющую 200 штрихов на миллиметр. Исследуемый спектр содержит спектральную линию длиной L = 670,8 нм, которая состоит из двух компонент, отличающихся на dL = 0,015 нм. Найти: а) в каком порядке эти компоненты будут разрешены; б) наименьшую разность длин волн, которую может разрешить эта решетка в области L = 670 нм. под заказ
нет
4-156 При нормальном падении света на дифракционную решетку ширины 10 мм обнаружено, что компоненты желтой линии натрия (589,0 и 589,6 нм) оказываются разрешенными, начиная с пятого порядка спектра. Оценить: а) период этой решетки; б) при какой ширине решетки с таким периодом можно разрешить в третьем порядке дублет спектральной линии с L = 460 нм, компоненты которого различаются на 0,13 нм.
предпросмотр решения задачи N 4-156 Иродов И.Е.
картинка
4-157 Дифракционная решетка кварцевого спектрографа имеет ширину 25 мм и содержит 250 штрихов на миллиметр. Фокусное расстояние объектива, в фокальной плоскости которого находится фотопластинка, равно 80 см. Свет падает на решетку нормально. Исследуемый спектр содержит спектральную линию, компоненты дублета которой имеют длины волн 310,154 и 310,184 нм. Определить: а) расстояния на фотопластинке между компонентами этого дублета в спектрах первого и второго порядков; б) будут ли они разрешены в этих по под заказ
нет
4-158 Освещаемая щель находится в фокальной плоскости объектива с фокусным расстоянием f = 25 см. За объективом расположена дифракционная решетка с периодом d = 5,0 мкм и числом штрихов N = 1000. При какой ширине b щели будет полностью использована разрешающая способность решетки вблизи L = 600 нм? под заказ
нет
4-159 Голограмму точки А получают в результате интерференции плоской опорной волны и предметной, дифрагированной на точке А. Расстояние от этой точки до фотопластинки l = 50 см, длина волны L = 620 нм. Фотопластинка ориентирована перпендикулярно направлению распространения опорной волны. Найти: а) радиус k-ro кольца голограммы, соответствующего максимуму освещенности; вычислить этот радиус для k = 10; б) зависимость расстояния dr между соседними максимумами от радиуса r соответствующего кольца для r < под заказ
нет
4-160 На фотопластинке, отстоящей на l = 40 см от небольшого предмета, хотят получить его голограмму, где были бы записаны детали предмета размером d = 10 мкм. Длина волны света L = 0,60 мкм. Каким должен быть размер фотопластинки? под заказ
нет
4-161 Для трехгранной призмы спектрографа предельная разрешающая способность L/dL обусловлена дифракцией света от краев призмы (как от щели). При установке призмы на угол наименьшего отклонения в соответствии с критерием Pэлeя L/dL = и |dт/dL|, где b — ширина основания призмы (рис. ), dт/dL — дисперсия ее вещества. Вывести эту формулу. под заказ
нет
4-162 Трехгранная призма спектрографа изготовлена из стекла, показатель преломления которого зависит от длины волны света как n = A+B/L^2, где A и В — постоянные, причем В = 0,010 мкм2, L — в мкм. Воспользовавшись формулой из предыдущей задачи, найти: а) зависимость разрешающей способности призмы от L; вычислить L/dL вблизи L1 = 434 нм и L2 = 656 нм, если ширина основания призмы b = 5,0 см; б) ширину основания призмы, способной разрешить желтый дублет натрия (589,0 и 589,6 нм). под заказ
нет
4-163 Какой должна быть ширина основания трехгранной призмы с дисперсией |dn/dL| = 0,10 мкм-1, чтобы она имела такую же разрешающую способность, как и дифракционная решетка из 10000 штрихов во втором порядке спектра? под заказ
нет
4-164 Имеется зрительная труба с диаметром объектива D = 5,0 см. Определить разрешающую способность объектива трубы и минимальное расстояние между двумя точками, находящимися на расстоянии l = 3,0 км от трубы, которое она может разрешить. Считать L = 0,55 мкм. под заказ
нет
4-165 Вычислить наименьшее расстояние между двумя точками на Луне, которое можно разрешить рефлектором с диаметром зеркала 5,0 м. Считать, что L = 0,55 мкм. под заказ
нет
4-166 В фокальной плоскости объектива образуется дифракционное изображение удаленного точечного источника. Оценить, как изменится освещенность в центре этого изображения, если объектив заменить другим, с тем же фокусным расстоянием, но с диаметром, вдвое большим. под заказ
нет
4-167 Плоская световая волна с L = 0,6 мкм падает нормально на идеальный объектив с фокусным расстоянием f = 45 см. Диаметр отверстия объектива d = 5 см. Пренебрегая потерями света на отражения, оценить отношение интенсивности I световой волны в фокусе объектива к интенсивности I0 волны, падающей на объектив. под заказ
нет
4-168 Определить минимальное увеличение зрительной трубы с диаметром объектива D = 5,0 см, при котором разрешающая способность ее объектива будет полностью использована, если диаметр зрачка глаза d0 = 4,0 мм. под заказ
нет
4-169 Имеется микроскоп с числовой апертурой объектива sin a = 0,24, где a — угол полураствора конуса лучей, падающих на оправу объектива. Найти минимальное разрешаемое расстояние для этого микроскопа при оптимальном освещении объекта светом с длиной волны L = 0,55 мкм. под заказ
нет
4-170 Найти минимальное увеличение микроскопа с числовой апертурой объектива sin a = 0,24, при котором разрешающая способность его объектива будет полностью использована, если диаметр зрачка глаза d0 = 4,0 мм. под заказ
нет
4-171 Пучок рентгеновских лучей с длиной волны L падает под углом скольжения 60,0° на линейную цепочку из рассеивающих центров с периодом а. Найти углы скольжения, соответствующие всем дифракционным максимумам, если L = (2/5)а. под заказ
нет
4-172 Пучок рентгеновских лучей с длиной волны L = 40 пм падает нормально на плоскую прямоугольную решетку из рассеивающих центров и дает на плоском экране, расположенном на расстоянии l = 10 см от решетки, систему дифракционных максимумов (рис. 4.34). Найти периоды решетки а и b соответственно вдоль осей X и Y, если расстояния между симметрично расположенными максимумами второго порядка равны dх = 60 мм (по оси X) и dy = 40 мм (по оси Y). под заказ
нет
4-173 Пучок рентгеновских лучей падает на трехмерную прямоугольную решетку, периоды которой a, b и с. Направление падающего пучка совпадает с направлением, вдоль которого период решетки равен а. Найти направления на дифракционные максимумы и длины волн, при которых эти максимумы будут наблюдаться. под заказ
нет
4-174 Узкий пучок рентгеновских лучей падает под углом скольжения a = 60,0° на естественную грань монокристалла NaCl, плотность которого р = 2,16 г/см3. При зеркальном отражении от этой грани образуется максимум второго порядка. Определить длину волны излучения. под заказ
нет
4-175 Пучок рентгеновских лучей с L = 174 пм падает на поверхность монокристалла, поворачивающегося вокруг оси, которая параллельна его поверхности и перпендикулярна направлению падающего пучка. При этом направления на максимумы второго и третьего порядков от системы плоскостей, параллельных поверхности монокристалла, образуют между собой угол a = 60°. Найти соответствующее межплоскостное расстояние. под заказ
нет
 
Страница 45 из 71 Первая<354142434445464748495571>
К странице